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Abstract

Inviscid flux Jacobian matrices and their properties used in numerical solutions

of conservation laws are extended to general, equilibrium gas laws. Exact and

approximate generalizations of the Roe average are presented. Results are given

for one-dimensional flow, and then extended to three-dimensional flow with time--

varying grids.

Introduction

Most treatments of inviscid terms in the numerical solution of conservation laws

utilize the properties of flux Jacobian matrices. For central difference methods,

the Beam-Warming scheme [1] requires the true flux Jacobians matrices, and their

eigenvalues and eigenvectors are needed for the diagonal algorithms [2]. Most up-

wind methods, such as the Steger-Warming flux-vector splitting [3], the van Leer

flux-vector splitting [4], and the Roe approximate Riemann solver [5], all utilize

the properties of the flux Jacobian matrix. Their original derivations relied on the

algebraic simplicity of the perfect gas law. Many flows of current interest involve

departure from a perfect, gas due to vibrational excitation, dissociation, and ioniza-

tion, although the assumption of thermodynamic and chemical equilibrium is still

valid. The purpose of this paper is to derive the flux Jacobian matrices and their

properties for a general, equilibrium gas law, and to present the generalization of

the Roe average used in Roe's approximate Pdemann solver. Generalizations of the

flux-vector splitting methods are reported elsewhere [6-9].

The generalizations of the Roe average proposed by other investigators [10-12]

are kll based on an approximate flux Jacobian matrix, or utilize some other approx-

imations. In the earlier stages of this work, whose results are reported in Refs. 7-9,

it was established that a Roe-averaged state exists for an equilibrium gas, but its

precise value is not uniquely defined. A particular method for obtaining a unique

state was proposed. In the present paper, a new, exact definition of a unique Roe-

averaged state is given. Since its exact implementation may not always be practical,

several approximations to the relations are also given. For simplicity, the analysis

is first presented for one-dimensional flow with a fixed grid. The results are then
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generalizedto three-dimensional flow with time-varying grids.

Flux Jacobian Matrices for One-Dimensional Flow

The primitive variables defining a fluid state are the density p, velocity u, and the

internal energy per unit mass e. Note that there is an arbitrary additive constant

in the definition of e. Since conservation laws are expressed in terms of conserved

quantities per unit volume, it is convenient to introduce the internal energy per

unit volume _- = pc. The corresponding set of conservative variables U can be

represented by the algebraic column vector

g (1)

_pu2 is the totalwhere m = pu is the momentum per unit volume, and e = _-+ _

energy per unit volume.

The calculation of the flux of U plays a central role in the numerical solution of

conservation laws. The set. of inviscid flux components F is given by the algebraic

column vector

f = mu+p

eu + pu

(2)

where M, P, and E are the flux of mass, momentum, and energy, and the pressure

p is given by a general equation of state of the form

p= (3)

The derivatives will be denoted by

Op and n =
x= b--f 0" (4)

If h = (?'+ p)/p is the specific enthalpy, the speed of sound c can then be expressed

as

c2 = x + (5)

It will also be convenient to define nondimensional parameters

pc 2
7 and _ 1 + p_ = =. (6)

p e
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Using Eq. (5) one can also express9 as

1 X
_ (7 + -). (7)

Note that while n, c, and 7 have well defined values, the values of X and "T depend

on the choice of arbitrary constant in the definition of c.

An important special equation of state is that. for a thermally perfect (but calor-

ically imperfect) gas, which has the form

(s)

This law is valid for a dilute gas consisting of a single chemical species, and is also

a very good approximation for air below the temperature when oxygen starts to

dissociate (approximately 2000 K). Using Eqs. (4)-(7) one can readily obtain the

relations

p = X(e)p + _(_)_ (9)

and

(10)
£

If one further specializes Eq. (8) by letting f(¢) be just a linear function of e, one

obtains the equation for a gas that is also calorically perfect. -- better known simply

as a perfect gas. This law is valid for a gas consisting of structureless particles, and

is also a very good approximation for air at low temperatures. The derivatives X and

_. are now constants. It follows from Eqs. (9) and (10) that. a great, simplification is

obtained if one chooses the arbitrary constant in the definition of e so that X = 0

and _ = _,. In fact, this choice is tacitly made in the usual definition of a perfect.

gas. It is therefore also customary to choose the arbitrary energy constant for a

general gas so that X approaches zero at low temperatures.

The differential expression dF = A dU defines the flux 3acobian matrix opera-

tor A. The differential

dp = x dp ÷ tedS, (11)

can be rewritten in terms of the differentials of the conservative variables as

dp = K1 dp - _u dm+ n de, (12)

where Ka ff_ u2 + X. The matrix A can then be written as

0 1 0 ]
A= K1-u s (2 - g)u n , (13)

(K1-H)u H-_u 2 (l+_:)u
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where H = h + _u" is the total enthaapy per unit. mass. The three eigenvalues of A

are readily found to be

A] =u, A2 =u+c, and A3 =u-c. (14)

The corresponding right, eigenvector matrix R is

1 1 1

71, I1 --F c U-- C

K2 H + cu H - cu

(15)

] 2
where K2 = _u - x/n = .H - c2/n, while the left eigenvector matrix R -1 takes the

form
1 - K]/c 2 nu/c 2 -n/c 2

' (nu/c_- 1/c) ]_/c_ (]6)n -_ = _(Zqlc_-_,lc) -_ _
' (K1/c 2 + u/c) ] (nu/c 2 + 1/c) ] n/c2

The only difference between the expressions in Eqs. (13), (15), and (16) and the

corresponding expressions for a perfect, gas is the presence of ),- in the terms/(1 and

K2, and the fact that n is a- variable instead of a constant. By writing 7{] and K2

in terms of H and c2, using Eq. (5), one can obtain expressions in which the only

difference with the perfect, gas expressions is the presence of the variable n.

One can define functions of the matrix A through

f(A) = f()_])P_ -4- f(),2)P2 + .f(Az)P3, (]7)

where the projection operators Pi are the tensor products

Pi = RiR_ 1. (18)

Examples off()_) are )% I_l, sgn_ = I_1/_, and )_+ = ()_ • i_1)/2. The formula for

P] is

1- _:_/_ n_/c_ -n/_ 1F_= (1- g_/c_)u ,¢u_/c_ -,_,/c _ | (19)
u 2-K]H/c 2 (nH/c 2-1)u 1-nH/c 2j

Using the fact that

_+_+_=1, (20)

where I is the unit matrix, one can express the other two projection matrices as

.P_ = _[+A/c + 1(1 ::F u/c)- P]]. (21)
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One can easily establish that

AU = F-4- (7 - 1 - n)p (22)

It follows that the necessary and sufficient condition for the homogeneity property

F = AU is given by a thermally perfect gas (Eq. (8)). Using Eq. (17), one can

expand F for a thermally perfect gas as

3

F= (23)
{-----I

where each Fi is associated with Ai. The final expressions for the Fi are

F] --

 ,1p('7- I)
'7

1

U

1 2
-_u ÷_

C 2

_(-_-_)
A_p [ 1

.F2 = _ u ::t=c

3 27 H -4- cu
(24)

where 7 = 7(e) • Eqs. (23) and (24) form the basis for the generalized Steger-

Warming flux-vector splitting [6-9].

Generalized Roe Average for One-Dimensional Flow

Among the various approximate Riemann solvers, the most common one uses the

Roe average because of its simplicity and its ability to satisfy the jump conditions

across discontinuities exactly. The derivation in Ref. 5 for a perfect gas employed

parameter vectors. To obtain a generalization for an equilibrium gas, a different,

more direct approach is used here.

In approximate Riemann solvers based on local linearization, the flux at a point.

separating two states b_and Un is based on the eigenvalues and eigenvectors of

some average A. The optimum choice for A is one satisfying

B

= A (25)
m

where A(.) = (.)_ -- (')L. This choice of A captures discontinuities exactly.

way of obtaining A is to seek an average state U, such that

One

__ m

A = A(U). (26)

The notation U implies only those variables that appear explicitly in Eq. (26). Such

a state is known as a Roe-averaged state, and was derived by Roe for a perfect gas.



The generalization to an equilibrium gas is obtained by substituting Eqs. (1), (2),

(13), and (26) into Eq. (25). The second component of Eq. (25) results in

-- + ZXP= + Ap+ (2-  ) (pRuR - p  L)2
(27)

1 2

The average velocity { must be some linear combination of UL and UR. Therefore

let

: + (28)

Since UL and uR can vary independently, the products u_, u_{, and ULUt{ are also

independent. After substituting Eq. (28) into Eq. (27), the terms involving each

of those products must satisfy the equation separately. From the coefficients of u_

one obtains the quadratic equation

a2(pR -- PL ) q- 2apL -- PL = 0. (29)

The only root that is finite when PR = PL is

a = v/_ (30)

From the coefficients of u_{ one can show that /3 = ] - a. The equatioi_ obtained

from the coefficients of ULUR is also satisfied by these expressions for a and /3.

Therefore Eq. (28) can be rewritten as

;U = al/L -+ (1 -- a)'t/,R. (31)

Eqs. (30) and (31) are the identical relations derived by Roe for a perfect gas. The

remaining terms in Eq. (27) result in the new condition

Ap + E A_" = Ap. (32)

This is just the discrete form of Eq. (11), averaged between the two states. This

last condition is automatically satisfied for a perfect gas. In a similar manner, the

third component of Eq. (25) results in the additional relation

-H = aHL + (1 - a)HR, (33)

which is also true for a perfect gas. From the definition of H, Eqs. (31) and (33)

can be combined to define the Roe-averaged specific enthalpy as

= ahL + (1 -- a)hR + la(1 - a)(Au) 2. (34)
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Note that h could lie outside the range given by hL and hR if the magnitude of Au

is sufficiently large. The Roe-averaged sound speed is given by Eq. (5) as

_z = _ + _. (35)

For a perfect gas, Eqs. (30), (31), (33), (34), and (35) are sufficient to define uniquely

)_i, R, and R-i, since _ = 0 and _ is a given constant.

For an arbitrary equilibrium gas, Eq. (32) provides only one relation for the

variables _ and E. We thus have the paradoxical situation that not only does a

Roe-averaged state exist for an equilibrium gas, its precise value is not uniquely

defined. For the special case in which state L and R are precisely those that satisfy

the jump conditions across a discontinuity, Eqs. (30) through (35) are consistent

with the exact Riemann solver, even though _ and _ are not uniquely defined. For

a stationary shock wave,
AM = AP = AH = 0. (36)

By combining the definitions of U and P with Eqs. (30), (31), and (36), one can

readily show that

_2 M_ Ap----_--- = ltLU R __ (37)
pLpR /kp"

The definitions of M, P, and H can be combined with Eqs. (36) and (37) to derive

the relation

A_-_--hap. (38)

By substituting Eqs. (32) and (38) into Eq. (35), it follows that for a stationary

shock wave, if _ and _ satisfy Eq. (32), then

_2_ Ap. (39)
Ap

From Eqs. (37) and (39) it follows that for a stationary shock wave the magnitude

of the Roe-averaged velocity is equal to the Roe-averaged sound speed. This could

have been predicted ahead of time from Eq. (14), since one of the eigenvalues had

to be equal to zero. From the definitions of M and H and Eq. (36) it follows that

Au)2 = ApAh (40)
PL + PR

Substituting Eq. (40) into Eq. (34) one obtains

-_ = pLhL -4- pRhn
PL -4- pit

(1 -- a)2hL + a2hR

(1 - a) 2 + a 2
(41)
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It is easy to show that Eqs. (39) and (41 are also valid for a non-stationary shock
wave.The values of h and _2 as given by Eqs. (39) and (41) will in general not be

consistent with a thermally perfect, gas law, except for the special case of a perfect.

gas.

It. is clear that unique values of _ and _ must, be defined in terms of the ther-

modynamic states L and R. Accurate numerical calculations for air [13] show that

and _ can have a non-convex behavior if the states L and R are far apart. A

clue to a simple definition for the two derivatives can be obtained by considering

the special case _-L = e-R, i.e., A_-= 0. Integrating Eq. (11) and substituting into

Eq. (32) yields

=A--eP=lffAp Ap X(P'-_L)dp" (42)
L

Thus _ is the integrated average of X along the strMght-line path between states

L and R in the p-e- plane for this special case. Actually, there is an infinite set. of

paths that. can be used to define _, but the straight-line path is the simplest, one

that can be defined for an arbitrary function. Similarly, for Ap = 0 one obtains

Ap 1 j_i R-_ - A _ - A-_ n ( p L , e-')arg. (43)

Let an arbitrary path between any two states L and R be defined parametrically

by the functions p(t) and ?-(t), where the parameter t is normalized so that tL -- 0

and tR = 1. Integrating Eq. (11) along this path, one obtains

1 f01Ap= fro X[P(t)"_(t)]P'(i)dt + n[p(t),'_(t)]'('(t)dt.

The simplest choice is the straight-line path

p(t) = pz + t Ap,

(44)

(45a)
(45b)

Substituting Eqs. (45) into Eq. (44), and comparing with Eq. (32), yields the general

relations

n

X= 01x[p(t), d,, (46a)

£o dr. (46b)
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Eqs. (45) and (46) give unique definitions of _ and g satisfying condition (32) for
arbitrary values of Ap and A_-, including the limiting case Ap = A_- = 0. From

Eqs. (34) and (35) one sees thai. even if Au = 0, _2 is not equal to the integrated

average of c2. Since h is a smoothly varying function (compared to X and n), it is

reasonable to expect that. _2 will always be positive. For a thermally perfect gas

law obeying Eq. (8), and Ac¢ 0, Eqs. (46a) and (46b) become

r (f _ cf') d_ (47a)X = PLPR /k_ ( /kT-- e Ap) 2'

f-R f' de (47b)
-g=PLPRAej_z (AT--cAp) 2"

Given an equation of state, or some interpolation representation (such as Ref. ]3),

the integrals in Eqs. (46) can be evaluated for any two end states L and R. Since

the exact evaluation may not be practical, some approximate quadratures may be

required. Let _ and _ be approximations to Eqs. (46a) and (46b). They will not

satisfy Eq. (32) exactly. One therefore requires values of _ and _, satisfying Eq. (32)

which are closest to _ and _. This can be formulated geometrically as projecting

lhe point _, K onto the straight line defined by Eq. (32). But, in order for the Roe-

averaged state to be independent of the arbitrary constant in the definition of _, one

must first recast, the problem so that geometric relationships will not be affected by

the choice of this constant.. This can be accomplished if one first, divides Eq. (32)

by K. The slope of the straight line for the variables 1/_ and ,_/K is now given by

Ap and Ap, both of which are uniquely defined by states L and R. A further scale

factor _" with the dimension of ,_ must. be introduced, since _ is not dimensionless.

The projection on to the straight line is then defined by the relation

_':_-Ap + -_ Ap = =- Ap + - Ap.
/_ K, /'¢., N.,

(48)

If one introduces the error

8p= Ap--_.Ap--_A_ (49)

and the quantity

D = (_'Ap) 2 + (Ap) 2,

one can solve Eqs. (32) and (48) to obtain the final relations

D_ + T Ap _p

D - Ap _p

D_

D - Ap _p"

(50)

(51a)

(51b)



A natural choicefor the scale factor _ is

_=_=_+_h, (52)

where the same quadrature approximation thai. was used to calculate _ and _ is

assumed. Note that the _" given by Eq. (52) is guaranteed to be positive. This is

not. necessarily true if one defined _"= :_ + _h.

I,et PM = (PL + pR)/2 and _-M = (_-r +_'R)/2 define the midpoint state _M. Then

possible quadrature rules for _ are the midpoint rule

:_ = XM, (53)

the trapezoidal rule

and Simpson's rule

_= (xL + xR)/2, (54)

= (XL + 4XM -4- XR)/6, (55)

with analogous formulas for K and _. Eqs. (53) and (54) are exact ifp is a quadratic

polynomial in p and _', while Eq. (55) is exact if p is a cubic polynomial. While the

expressions for _ and K given in Refs. 7-9 used approximation (54), they differ from
A A

the present, results since Eq. (48) was written in terms of 1/_ and X/_. If/.he states

L and R are reasonably close, approximations (53) or (54) should be adequate.

For large separation of the two states, Simpson's rule (55) may be required. The

quantity D/P2L is a useful nondimensional parameter measuring the separation of

the two states.

While the above relations are all that are required to construct a Riemann solver

using Roe's linearization, an additional algebraic simplicity can be achieved by

expressing differences in conservative variables in terms of differences in primitive

variables. If one formally defines

one obtains the identities

= v_pLpR, (56)

/X(pu) = _/xu + _/Xp (57)

and

zx(t,u_)= 2_ zx. + _ At,. (5S)

An important quantity in the approximate Riemann solver is the column vector

R-1AU. Its components are the jumps in the characteristic variables. Using

Eqs. (32), (57), and (58), it can be expressed simply in term of Ap, Ap and Au as

/st, _ Ap/-c2
R-_AU = ½(_pl-e_+-_l-c) (59)
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Theseexpressionshave the sameform as for the perfect gas case.The quantities
and _ do not appear explicitly.

Comparisonswith Other Formulations

The formulas for Roe's approximate Riemann solver described by Grossman and

Waiters []0] involve three approximations. They assume that 1) A 9 and A 7 are

small, 2) A_ can be related to Ap via an isentropic formula, and 3) q is nearly

equal to 3'. All these approximations can be poor if the two states are far apart. If

one notes that

c2= (9- 1)7h, (60)

their final expressions are equivalent to setting X = 0, with q and 7 replaced by

their arithmetic averages. The calculations of Ref. 13 show that setting X = 0 in

the first eigenvector of Eq. (15) may not be justified.

Glaister [11] follows an analysis similar to the present one, except that he employs

e instead of _" in Eqs. (3), (4), and (11). As a result it is necessary to introduce fi

via Eq. (56), as well as to define

= aCL + (1 -- a)en (61)

in order to obtain Eq. (32) in terms of Ae. In the limit of a perfect gas, note the

inconsistency between Eqs. (34) and (61). He suggests a different integration path

in order to define his _ and g. Let pL,_R define the fictitious state T, and PR,_L

define state B. Then _= and g are defined as the arithmetic averages of the values

resulting from integrating Eq. (32) via paths L-T-R and L-B-R, respectively. This

results in

1

=  (Ap + pB- pT)/Ap,
1

= Ap + pr - pB)/

(62a)

(625)

These are replaced by X = ½(XL + XR) if Ap = 0, and _ = + nR) if Ae = 0.

If the states L and R are far apart, and the equation of state is non-convex, the

introduction of the fictitious states T and B could give poor results.

Liou et al [12] also follow Glaister's analysis, employing e instead of _-, but suggest

using the state M defined by Eqs. (56) and (61) instead of M to calculate their

approximate _ and _ by the midpoint rule (53). From the interpretation of _ and

as quadrature approximations to integrals, it would appear that evaluating at the

average state M would give a better approximation in general. Their formulas for

11



the values of _ and _ satisfying Eq. (32) which are closest to _ and _ also break

down when either Ap or A_ approaches zero.

Generalization to Three-Dimensional Flow

The generalization of the above results to three-dimensional flow can be accom-

plished in a compact manner by employing the vector approach of the author [14].

Here the word vector refers to a physical vector such as velocity or momentum, as

distinguished from an algebraic vector representing a set of variables. If u is the

fluid velocity vector, then U can be represented by the column vector

I+]U=

where m = pu is the momentum vector per unit volume, and e = _-+ ½PU. u is the

total energy per unit volume. Let n be the unit normal vector in a positive direction

to a cell surface in a finite-volume grid, or a coordinate surface in a finite-difference

grid. If v_ is the normal component, of the velocity of a time-varying surface, and

Un = U • n, one can define the normal relative velocity component u' = u_ - v_.

The set, of inviscid normal flux components F,_ is given by the column vector

Fn = mu' + pn

eu' + pu_

(64)

where M, P, and E are the normal flux of mass, momentum, and energy.

The flux Jacobian requires expressing dFn in terms of dU. For a fixed Vn and n,

the first component of dF_ can be written as

d(pu') = -v= dp -4- n . dm. (65)

This can be rewritten in the form of a matrix multiplication as

[-v= 0]
I dp

dm

de

, (66)

where the dot product is implied in multiplying the second dement of the row

vector by the second dement of the column vector. Applying the same procedure

to the other components of dF,_, one can define the flux Jacobian matrix operator

A satisfying dF,_ = A dU, using the convention that in forming the product of a

12



matrix element with a vector element, a dot product is implied if each element is

either a physical vector (e.g. u or n) or a tensor (e.g.

can then be written as

A

un or nu). The matrix A

-vn n 0 ]

__]n -- unu un -- Kntl -_ u_I _;n ](K1 - H)u,_ Hn - nu, u u' + nun

(67)

1
where K1 = ½Ku - u + X, H = h + gu • u is the total enthalpy per unit, mass, and I

is the identity tensor. The three eigenvalues of A are

:X_=u' _=u' ' (68), +c, and _3 =u -c.

)q is a repeated eigenvalue, requiring a set of linearly independent eigenvectors,

which can be defined with full generality in term of an arbitrary set of spatial basis

vectors ai, and a set of reciprocal basis vectors a j satisfying ai • a j = _J2, where _

is the Kronecker delta. One can then define a,_i = n • ai, bi = n × ai, a3n = n • a 3,

and b j = n x a j. If fl is an arbitrary scalar, the right eigenvector matrix R can be

written in the most general form as

a-_i 1 1

a,_iu + flbi u + cn u - cn

a,_iK2 + flbi " u H + cu,_ H - cu.

(69)

1
where K2 = _u • u - ?4/n, while the left eigenvector matrix R -_ takes the form

R -1

a_ (1 - tfl/c 2) - b j . utfi

+

aJnu/c 2 + b j/fl

-1- - n/c)2

-1- +2

1 2
-_n/c

(70)

Note that i and j take on values from 1 to 3, so that R has five columns and R -1

has five rows. A useful choice for the basis vectors is to let one of the ai be parallel

to n, so that the corresponding bi = 0. The remaining ai are then chosen to lie in

the plane perpendicular to n, so that their corresponding a,_i = O.

Eq. (17) which defines a function of A is still valid, with P1 given by

[ 1 - Kl/c 2

P_ = | _nn -- K_u/d
Lu,J - K1H/d

,_u/ ¢_ - ,¢/_
nuu/c 2 - nn + I -I¢u/c 2

tcHu/c 2 - unn 1 -- t_H/c 2

(71)

and the other two projection matrices given by

1

P_ = -_[+A/c + Z(1 :F u'/c) - P_]. (72)

13



In the diagonal algorithms [2] one encounters the product of two eigenvector

matrices, each of which is associated with a different surface. Let the surface with

the unit normal vector nk have associated with it the set of basis vectors aik with

reciprocal basis vectors a_ , and an arbitrary scalar/3_.. One can then define anik =

nk "aik, bik = nk × aik, a j " ",_k = nk. a_, and b_ = nk X a_.. Similarly, let the surface

with the unit normal vector nt have associated with it the set of basis vectors aiz

with reciprocal basis vectors a] , and an arbitrary scalar ill. One can then define

J a], and b] = nz × a_. Then the five by fiveanil: nl "all, bil = Ill × all, anl = nl •

matrix R_ -3 Rz can be written as

R- 1Rz =

- j bJfl,/flkanilank "-k bil "

½5zb;i- nk/c
l

- fltbu • nk/c

ebb. n,/Zk
½(1+ Ilk. n,)
}(1-- nk.nt)

½(1 - nk. n,)|.
½(1 + nt.- n;)J

(73)

From the form of (73) it follows that the matrix only depends on geometric factors

if both flk and fit are chosen to be proportional to the sound speed c.

For a thermally perfect gas one can expand Fn as

3

i=1

(74)

where the F,_, are given by

]Pnl =
- 1)

7

1

U

1
_u.u+e

c 2

.y(._- l )

A2p

-'3 27

1

u±cn

H +cun

(75)

The generalization of the Roe average for a surface separating UL and UR is

obtained by substituting Eqs. (63), (64), (67), and (26) into AF_ = AAU, with n

and v,_ fixed at the surface. In the momentum equation, _ must. be some linear

combination of the vectors uL, u/_, and n. Since these three vectors can vary

independently, the dot products UL • UL, UL • UR, UR " UR, UL • n, and uR • n are

also independent. In a manner similar to the one outlined for the one-dimensional

case, one can easily show that

= aUL + (1 - a)uR, (76)

where a is still given by Eq. (30). Eqs. (32), (33), and (35) are still valid, with

given by

la(1- a)Au. Au. (77)-h = ahL + (1 - a)hR + -_
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The previously derived expressionsfor _ and _ remain unchanged. The expression
for R-_AU becomes

R-aAU =
aJ(Ap- Ap/-d 2) + _(b j • Au)/fl

½( AP/-_ _ + _n-Au/_)

½(AP/F 2 - _n. Au/_)

(78)

Conclusions

Inviscid flux aacobian matrices and their properties which are useful in CFD

techniques have been derived for an arbitrary, equilibrium gas. Both exact and

approximate generalizations of the Roe average have been presented.
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